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In a continuing effort to develop potent and selective modulators of P-glycoprotein (P-gp) activity overcoming
the chemoresistance acquired by tumor cells during cancer chemotherapy, we developed 3D quantitative
structure-activity relationship (3D QSAR) models using CoMFA and CoMSIA analyses. This study correlates
the P-glycoprotein inhibitory activities of 49 structurally related anthranilamide derivatives to several
physicochemical parameters representing steric, electrostatic, acceptor, donor, and hydrophobic fields. Both
CoMFA and CoMSIA models using three different alignment conformations gave good internal predictions,
and their cross-validatedr2 values are between 0.503 and 0.644. These most comprehensive CoMFA and
CoMSIA models are useful in understanding the structure-activity relationships of anthranilamide derivatives
as well as aid in the design of novel derivatives with enhanced modulation of P-gp activity.

Introduction

A major limitation to the successful chemotherapeutic treat-
ment of cancer is the natural and the acquired resistance of tumor
cells to cytotoxic drugs.1 The overexpression of drug transport
proteins such as multidrug-resistance-associated protein (MRP)
and P-glycoprotein (P-gp) is a major component involved in
multiple drug resistance mechanisms (MDR).2 As a member of
the ATP-binding cassette (ABC) family of ATPase-dependent
membrane transporters, P-gp is involved in multidrug resistance
mechanisms and therefore is of utmost clinical importance.3 P-gp
was first isolated by Ling and Juliano in 1976 and has been
shown to efficiently “pump” substrates out of tumor cells
through an ATP-dependent mechanism in a unidirectional
fashion.4 In tumor cells overexpressing P-gp, this results in
reduced intracellular drug concentrations, which decreases or
abrogates the cytotoxicity of a broad spectrum of antineoplastic
agents including 5,12-anthracyclinediones (e.g., doxorubicin),
vinca alkaloids (e.g., vincristine), podophyllotoxins (e.g., eto-
poside), and taxanes (e.g., paclitaxel). Numerous hypotheses on
the mechanism of drug transportation by P-gp have been
devised; however, they are still debated among experts.5-9

The inhibition of P-glycoprotein in clinical oncology is of
utmost importance in modern cancer chemotherapy. It is hoped
that the use of specific P-gp modulators would restore the
therapeutic activity of anticancer agents that are substrates of
that transporter because the MDR phenotype has been shown
to be reversed by a number of structurally heterogeneous
molecules, notably verapamil,10 cyclosporin A,11 tacrolimus,12

quinidine,13 dihydropyridines (nicardipine),14 and other drugs.15,16

Consequently, numerous clinical trials using clinically relevant
P-glycoprotein modulator drugs such as verapamil,17,18tamoxi-
phen,19 progesterone,20 and cyclosporin A21 have been tested
with limited success mainly because of their intrinsic toxicity
or unfavorable pharmacokinetics of the accompanying anticancer
drugs. Improved results were obtained using modulators that
are specifically directed toward P-gp. The newer agents includ-
ing cyclosporin D analogues,22 anthranilamide derivatives
(tariquidar),23,24acridonecarboxamide derivatives (elacridar),25

and cyclopropyldibenzosuberane derivatives (zosuquidar)26 have
demonstrated improved P-gp selectivity and pharmacological
properties such as the duration of action. Tariquidar (Figure 1),
a selective anthranilamide MDR-1 modulator, is the most potent
molecule known that can abrogate cell chemoresistance at
concentrations ranging from 25 to 80 nM.27 It is established
that MDR modulators share common physicochemical properties
such as high lipophilicity and are positively charged at the
physiological pH.6 There are cationic amphiphilic modulators
of P-gp that usually possess an aromatic ring system and a basic
tertiary nitrogen positioned at a fixed distance from the aromatic
system. Several qualitative structure-activity relationships of
MDR modulators revealed the importance of the aromatic
system and the basic nitrogen30,31 atom in P-gp inhibitors.
Another study of 232 phenothiazines indicated that a molecule
bearing an amide carbonyl group and a tertiary amine are
necessary to inhibit P-gp.32 A separate study on 19 propafenone
derivatives confirmed the requirement for the carbonyl oxygen,
which interacts with the protein via a hydrogen bond to inhibit
P-gp.33

The first 3D-QSAR of MDR modulators was performed on
phenothiazines and related drugs.34 This was followed by a
Hansch-type QSAR studies with propafenone analogues,35

CoMFA studies of phenothiazines and related drugs,36 CoMFA
studies of propafenone analogues,37 and simple regression
models of propafenone analogues.38,39Those models confirmed
the importance of hydrogen bond acceptors and donors and the
basic nitrogen for P-gp modulators.38-40
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3D-QSAR Studies on Anthranilamide Derivatives

In this paper, we report the most comprehensive 3D-QSAR
study on a series of 49 tariquidar derivatives.41 We compared
the traditional CoMFA method with the CoMSIA method using
anthranilamide P-gp modulators. The latter has been proposed
to give better interpretation of results compared to CoMFA
method.42 It is only recently that we can find a comprehensive
3D-QSAR study with anthranilamide derivatives developed by
the Wiese and Pajeva group.43 They used the pharmacophore
of Hoechst 33342 to build their model. Hoescht 33342 is known
to bind at the H-site of P-gp, similar to1 (XR9576). There is
strong evidence that Hoechst 33342 is a substrate to P-gp
spanning its transport and regulatory functions. Although both
Hoechst 33342 and1 share a common binding site, the former
is not a P-gp substrate while the latter causes a distinct effect
on P-gp and is able to inhibit the ATP hydrolysis and the P-pg
function.24 The 3D-QSAR studies with anthranilamide deriva-
tives developed by the Wiese and Pajeva group have a few
common themes between the phenothiazine models and our
model. The general structural features of significant importance
for anti-MDR activity that are similar for both models are an
aromatic ring system substituted by a electroattractor group like
methoxyl, trifloromethyl, or chlorine, a tertiary nitrogen atom
disposed within an extended side chain, hydrophobicity in the
molecule, and the carbonyl group as the acceptor hydrogen
group. In the Wiese and Pajeva tariquidar study, 32 anthranil-
amide derivatives were considered in the training set. It appears
that there is no structural diversity in region D and little diversity
in the regions B and C, and a single alignment rule was used
(Figure 1). In fact, only the tetrahydroquinoline moiety is used
in region D. The phenyl group and four molecules with a direct
bond to the (alkyl chain) are used in region C, and a few
molecules with substitution are used in the anthranilamide core.
They obtained a moderate to good average cross-validated
coefficientq2 (0.211-0.794) in CoMFA and CoMSIA models,
and they used only one compound as a real external test set.
With the above background, we initiated a comprehensive
investigation into the structural features of tariquidar, Hoechst
33342, and their derivatives. We included 49 tariquidar deriva-
tives with a variety of functionalities in every region of the
molecule (Table 1). It is well-known that the choice of alignment
and conformation could influence the final model. Because of
several possibilities, we decided to investigate three different
conformations and two alignment rules to compare if the choice
of the conformation and the alignment would influence the
correlation. The choice of an active conformation is an important
task prior to building a 3D-QSAR model. The choice of the
three different conformations was based on the following
parameters: the lowest global energy, extended conformations,
and overlap of1 onto Hoescht 33342. Current studies will help
to establish the functional regions that are necessary for the
activity of P-gp antagonists.

Computational Details

Data Sets and Biological Activity.To ensure that there is
consistency in determining the biological activities, the training
sets and test sets for the QSAR analyses were taken from the
same sample data set consisting of 178 compounds reported by
Xenova Group Ltd.41 The IC50 values (µM) reflecting the
accumulation of daunorubicin when co-incubated with various
compounds on AR 1.0 cells overexpressing P-glycoprotein were
considered in building the 3D-QSAR models. Forty-nine
compounds were selected for the training set, and 13 compounds
were selected for the test set. The latter molecules are different
from those of the training set. The molecules of the test set
represent 27% of the training set, which is a good ratio to
validate a molecular model. The strategy for the selection of
the compounds to be included in the test set was a random
selection of compounds that exhibited a large range of inhibitory
activities. The structure and the IC50 values of the compounds
chosen to be part of the training and the test set are listed in
Table 1.

Template Selection, Conformation, and Optimization.In
the development of 3D-QSAR models, the choice of the
template conformation is important to provide the illustration
of a reliable pharmacophore model. Unfortunately, there is no
high-resolution X-ray structure of P-gp complexes available for
any structure-based drug design efforts. Moreover, anthranil-
amide derivatives that were used in this study have a flexible
molecular structure; thus, the determination of the active or a
single conformation is difficult to achieve in the absence of the
complex structure. In that context,1 was selected as a molecular
template. This compound was chosen mainly for its importance
as a lead structure. In addition,1 is one of the most potent
modulators of P-gp known. In our study, three different
conformations of1 were selected to assess their effect on the
determination of a valid 3D-QSAR model. Initial structures were
generated using the cleanup procedure within SYBYL and
energy-minimized using MAXIMIN2 (Powell method, 2000
iterations, and 0.05 kcal mol-1 Å-1 energy gradient convergence
criteria). It is many times true that the conformation representing
the global minimum of the ligand may not bind to the receptor
and some degree of torsional freedom is required for the drug
to adapt to the receptor binding site to yield a drug-receptor
complex of lower energy.47,48

The “minimum” energy conformation resulting from a
MAXIMIN2 procedure is a good starting point for possible
candidate conformations for the compound of interest. It is also
important to restrict all possible conformations of the drugs to
those that can reasonably be obtained upon binding. Although
there are no absolute rules to do that procedure, a(10
kcal/mol cutoff (difference between the energy of the local
minimum conformation and that of a particular chosen confor-
mation) is considered reasonable in CoMFA studies.49,50

a. Selection of the Conformations 1 and 2 of Tariquidar.
A systematic search on the energy-minimized conformations
of 1 was initially undertaken. As shown in Figure 1, five
rotatable bonds with an increment of 30° were used to generate
10 259 conformers. The top 50 conformers having the lowest
energy were energy-minimized using the Tripos force field
software (Powell method, 2000 iterations, and 0.05 kcal mol-1

Å-1 energy gradient convergence criteria) and optimized using
MNDO (full optimization, precise convergence, restricted
rotation around the amide bondssMMOK). Two conformers
of 1 were then selected. The first one, designated as 9576_T1,
has an energy of 21.167 cal/mol (Figure 2A). The second one,
designated as 9576_T2, has an energy of 16.384 kcal/mol

Figure 1. Molecular structure of tariquidar. Different portions of the
molecule studied are represented by regions A-D.
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(Figure 2B). The conformer 9576_T1 was the extended con-
formation with the lowest energy in this family of conformers.
We decided to choose an extended conformation of1 because
it is known that a modulator could bind to P-gp in an extended
conformation such as propafenone modulator.32 A few studies
have shown a close correlation between the membrane interac-
tion and MDR reversing activity of P-gp inhibitors. These
studies have demonstrated that an extended conformation of

propafenone was preferable for the activity, suggesting the
importance of the membrane-mediated interactions in the MDR
reversal.32 The conformer 9576_T2 is the one close to the global
minimum energy. We did not select the lowest energy confor-
mation where the 3,4-tetrahydroisoquinoline moiety is between
the benzene ring and the 3-isoquinoline group because it is
unrealistic that the molecule could bind in such a closed
conformation. Furthermore, it is known that the acceptor group

Table 1. Molecular Structures and MDR Reversing Activities of the Molecules Selected for Both the Training and the Test Sets

a Code numbers in parentheses were obtained from the patent WO98/17648 filed by Xenova Ltd. Molecules used in the test set are identified by the
prefix “t”.
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on this ring and the amine are important to the activity.36,38-40

A conformation slightly open to allow additional freedom to
the acceptor group and the amine to the protein was selected.

b. Selection of Conformer 3 of Tariquidar. By use of the
molecular features of Hoechst 33342, which binds at the H-site
of P-gp such as1, atoms of the same type (viz. H-donor,
H-acceptor, aromatic group) were overlapped. There is no X-ray
crystal structure for the bound conformation of Hoechst 33342.
Initial structures were generated using the cleanup procedure
within SYBYL and energy-minimized using MAXIMIN2
(Powell method, 2000 iterations, and 0.05 kcal mol-1 Å-1

energy gradient convergence criteria, with charge using the
Gasteiger-Hückel method) followed by simulated annealing.51

Simulated annealing was performed using these parameters: 100
cycles, 2000 K initial temperature for heating during 2000 fs
to reach the equilibration, 0 K target temperature for 5000 fs of
annealing time, and exponential annealing function. The 100
conformations representing local minima were then optimized
using the MNDO method (full optimization, precise conver-
gence) implemented in MOPAC 6. For Hoechst 33342, four
clusters of conformations were identified and the lowest energy
conformer in each cluster was taken for further analysis. The
conformers differed in the position of the benzimidazolyl ring
attached to the methylpiperazinyl group. So these conformers
are different in the orientation of the nitrogen in the benzimi-
dazolyl rings. One pair of conformers has the nitrogen of both
imidazolyl rings either in the same orientation or in opposite
directions. Because the heat of formation of each conformer
was very close, the conformer exhibiting both imidazolyl nitro-
gens (-NH anddN) in both benzimidazolyl rings in opposite
directions was chosen. This conformer was used as a template
to define the conformation of1 and is illustrated in Figure 3.
Then the conformation of1 close to the selected conformation
of Hoechst 33342 was established using the same procedure
described above for Hoechst 33342. After simulated annealing,
each conformer was evaluated, and those where both the NH
and the carbonyl amide were in the same direction were
discarded, leading to the exclusion of 71 conformers. The
remaining 21 conformers were then energy-minimized using
the Tripos force field (Powell method, 2000 iterations, and 0.05
kcal mol-1 Å-1 energy gradient convergence criteria, with
charge from the Gasteiger-Hückel method) and optimized using
MNDO (full optimization, precise convergence, restricted amide

bond rotationsMMOK). These 21 conformers were overlapped
using the “Fit” procedure onto the previously selected conformer
of Hoechst 33342. The structural features of Hoechst 33342
included three aromatic groups, four acceptors, and two donor
groups. It has been shown that some of these features were part
of the main pharmacophore of Hoechst 33342. Six out of these
nine features were selected for further analysis. The following
features were used in overlapping the conformers: (1) the
oxygen of the ethoxy group of Hoechst 33342 to the methoxyl
group of the anthranilamidyl ring of1, (2) the benzene ring of
Hoechst 33342 to the benzene anthranilamidyl moiety of1, (3)
nitrogen acceptor atoms (dN-) of Hoechst 33342 to the
carbonyl of the amide of1, (4) nitrogen donor atoms (-NH)
of Hoechst 33342 to the amine of the amide of1, (5) the centroid
of aromatic ring of the benzimidazolyl of Hoechst 33342 to
the centroid of the benzene ring of1, and (6) the nitrogen atom
of Hoechst 33342 to the basic amine group of1. The template
is shown in Figure 2, and the best fit is depicted in Figure 4
(rms ) 0.587 Å). The energy of the 9576_T3 conformer is
16.116 kcal/mol.

The structures of the other compounds were built based on
the selected conformations of compound1. All structures were
energy-minimized using molecular mechanics (Powell method,
2000 iterations, and 0.05 kcal mol-1 Å-1 energy gradient
convergence criteria), and charges were calculated using the
Gasteiger-Hückel method. The geometry optimization was done
utilizing MNDO (full optimization, precise convergence, re-
stricted amide bond rotationsMMOK) as implemented in
MOPAC as supplied by SYBYL 7.0.

c. Structure Alignment. Two different alignment rules were
applied to align the training data set. The first one is Ar-O-N
present in all molecules: the benzene ring, the oxygen of the
amide near the spacer arm, and the basic nitrogen atom (Figure
5a). The second rule is Ar-Ar-N, which considers the role of
the aromatic ring attached to the anthranilamidyl moiety and is
applied by fitting the centroid of the benzene, the centroid of
the quinolinyl moieties, and the basic nitrogen atom (Figure
5b). In both alignments compound1 was used as the template

Figure 2. Spatial representation of tariquidar conformers: (A) 9576_T1 conformer; (B) 9576_T2 conformer; (C) 9576_T3 conformer.

Figure 3. Molecular structure of selected Hoechst 33342 conformers.

Figure 4. Best fit of the conformation T3 and Hoescht 33342
(conformer T3).
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molecule. Command “align database” was used to apply the
first alignment rule and the “fit” procedure for the second rule
alignment.

CoMFA and CoMSIA. The initial COMFA model was
calculated using the SYBYL 7.0 molecular modeling software.
For the calculation of charges, the Gasteiger-Hückel method
was used as implemented in SYBYL 7.0. For the training
compounds set, the CoMFA descriptorsssteric (Lennard-Jones
6-12 potential) and electrostatic (Coulombic potential) field
energiesswere calculated using SYBYL. In general, the fol-
lowing standard characteristics were used to calculate the
CoMFA fields: 4.0 Å extension beyond the van der Waals
envelopes of the molecules, a distance-dependent dielectric
constant (1/r), and an sp3 carbon atom with+1.0 charge serving
as the probe atom to the calculate steric and the electrostatic
fields. The following standard CoMFA fields were calculated:
steric (S), electrostatic (E), and both (B). The effects of changing
several parameters were systematically investigated, including
dielectric (function as 1/r vs constant), grid step size (1-3 Å),
probe atom type (H+, O3-, and Csp3

+), and the cutoff values
for the steric and the electrostatic fields. Some others descriptors
were also added to see their effects on the correlation such as
molecular weight, dipole moment, molar refractivity, log P, polar
volume, and polar surface area.

CoMSIA analysis was performed using the QSAR module
in SYBYL 7.0. The five similarity indices in CoMSIA (steric
(S), electrostatic (E), hydrophobic (H), H-bond donor (D), and
H-bond acceptor (A) descriptors) were calculated using the
probe atom Csp3

+ with a radius of 1 Å and a+1.0 charge placed
at the lattice points of the same region of grid as it was used
for the CoMFA calculations. CoMSIA similarity indices (AF)
for a moleculej with atomi at a grid pointq are calculated by

wherek represents the following physicochemical properties:
steric, electrostatic, hydrophobic, H-bond donor, and H-bond
acceptor. A Gaussian type distance dependence was used
between the grid pointq and each atomi of the molecule. A

default value of 0.3 was used as the attenuation factor (R). Here,
steric indices are related to the third power of the atomic radii,
electrostatic descriptors are derived from atomic partial charges,
hydrophobic fields are derived from atom-based parameters,52

and H-bond donor and acceptor indices are obtained by a rule-
based method based on experimental results.53

PLS Analysis. The conventional CoMFA and CoMSIA
descriptors derived above were used as explanatory variables,
and pIC50 (-log IC50) values were used as the target variable
in PLS regression analyses to derive 3D QSAR models using
the implementation in the SYBYL package. The predictive value
of the models was evaluated by leave-one-out (LOO) cross-
validation with SAMPLS. The cross-validated coefficient,q2,
was calculated using

whereYpred, Yactual, andYmean are predicted, actual, and mean
values of the target property (pIC50), respectively.∑(Ypred -
Yactual)2 is the predictive sum of squares (PRESS). The number
of components giving the lowest PRESS value or the optimal
number of components (ONC) was used to generate the final
PLS regression models. The conventional correlation coefficient
r2 and its standard error,s, were subsequently computed for
the final PLS models. CoMFA and CoMSIA coefficient maps
were generated by interpolation of the pairwise products between
the PLS coefficients and the standard deviations of the corre-
sponding CoMFA or CoMSIA descriptor values. The boot-
strapping procedure was used to validate each model. This is a
procedure in whichn random selections out of the original set
of n objects are performed several times (100 times was used
to have good statistical information) to simulate different
samplings from a larger set of objects. In each run some objects
may not be included in the PLS analysis (same method to
determine theq2), whereas some others might be included more
than once. Confidence intervals for each term can be estimated
from such a procedure, giving an independent measure of the
stability of the PLS model.54-56

Results and Validation

CoMFA Analysis. A data set of 49 tariquidar derivatives
was used with a wide spectrum of activities against AR 1.0
cells overexpressing P-glycoprotein. The data set of 49 modula-
tors was aligned (Figure 6) to derive both the conventional
CoMFA and CoMSIA models. Thus, a total of six models were
generated with three different conformations of the same
template using two alignment rules (alignments 1 and 2). An
external test set of 13 compounds was used to determine the
accuracy of the model (Figures 7 and 8).

The cross-validatedr2 (q2) values for the six models relating
the accumulation IC50 of daunorubicin on MDR cells are shown
in the Supporting Information. By use of the default CoMFA
settings, which included both steric and electrostatic fields, and
by use of the first alignment rule, a cross-validated coefficient
(q2) of 0.490 with two optimum components with 9576_T1, a
q2 of 0.522 with three optimum components with 9576_T2 and
a q2 of 0.527 with five optimum components with 9576_T3
were observed. With the same options, by use of the second
alignment rule, a cross-validated coefficient (q2) of 0.449 with
two optimum components with 9576_T1, aq2 of 0.581 with
three optimum components with 9576_T2 and aq2 of 0.431
with two optimum components with 9576_T3 were observed.

Figure 5. Representation of atoms used in the alignment rules 1 (a)
and 2 (b). The asterisk (/) represents the atoms or centroids that are
aligned in the model.

AF,kq(j) ) - ∑ωprobe,kωik e-Rriq
2

(1)

q2 ) 1 - ∑(Ypred- Yactual)
2

∑(Yactual- Ymean)
2

(2)

7650 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 26 Labrie et al.



The choice of the CoMFA options described below was based
on maximizing theq2 value.

The statistical parameters associated with all models are
shown in Tables 2 and 3. The predicted pIC50 values for each
training set of compounds and the residual values are given in
Tables 4 and 5, respectively. The best model with 9576_T1 was
obtained using the following options and alignment rule 1
(T1R1): steric and electrostatic fields with 2 kcal/mol cutoffs,

1/r for the dielectric function, 2.0 Å step size, a Csp3+ probe
atom, and a grid box set at SYBYL’s default position. This
model had aq2 value of 0.564 with four components, a
conventionalr2 value of 0.874, and a standard error of estimate
(SEE) of 0.215. This analysis yielded anF(4,44)value of 76.457.
The final cross-validated model utilized 6587 of 6732 actual
terms in the analysis. The best model with the 9576_T2 was
obtained using the following options and alignment rule 2

Figure 6. Alignment of P-gp modulator of the training set: (A) 9576_T1 and alignment rule 1; (B) 9576_T1 and alignment rule 2; (C) 9576_T2
and alignment rule 1; (D) 9576_T2 and alignment rule 2; (E) 9576_T3 and alignment rule 1; (F) 9576_T3 and alignment rule 2.

Figure 7. CoMFA predictions for the test (A-C) and the training
(D-F) sets for MDR inhibitory activities against AR 1.0 cells
overexpressing P-glycoprotein.

Figure 8. CoMSIA predictions for the test (A-C) and the training
(D-F) sets for MDR inhibitory activities against AR 1.0 cells
overexpressing P-glycoprotein.
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(T2R2): electrostatic fields with 10 kcal/mol cutoffs, 1/r for
the dielectric function, 2.0 Å step size, a Csp3

+ probe atom, and
a grid box set at SYBYL’s default position. This model had a
q2 value of 0.645 for three components, a conventionalr2 value
of 0.855, and a SEE of 0.228. The analysis yielded anF(3,45)

value of 88.714. The final cross-validated model utilized 3460
of 3465 actual descriptor columns in the analysis. The best final
model with the 9576_T3 was obtained using the following
options and alignment rule 1 (T3R1): steric fields with 35 kcal/
mol cutoffs, electrostatic fields with 1 kcal/mol cutoffs, 1/r for
the dielectric function, 2.0 Å step size, a Csp3

+ probe atom, and
a grid box set at SYBYL’s default position. This model had a
q2 value of 0.532 for four components, a conventionalr2 value
of 0.876, and a SEE of 0.213. The analysis yielded anF(4,44)

value of 77.728. The final cross-validated model utilized 5296
of 5408 actual descriptor columns in the analysis. The models
with the descriptors MD and MW were discarded although the

cross-validated coefficientq2 was higher, the statisticalF value
was significantly lower, and the non-cross-validatedr2 was
comparable to the model without these descriptors (data not
show).

A q2 of 0.5 is generally considered an indication that the
model is internally predictive; thus, theq2 values obtained in
the present case are all near that number varying from 0.496 to
0.646. To validate our models, the bootstrapping function was
used to determine the error on ther2 (r2

boot) and the SEE
(SEEboot) of the model. This statistical parameter gave an idea
of the accuracy of the model. In fact, the best model of each
conformation has a small error on the SEE andr2. T1R1 and
T3R1 CoMFA models were the best models obtained with
9576_T1 and 9576_T3. These models have an r2

boot of 0.909
( 0.26 and 0.910( 0.026, respectively. They also have a
SEEboot of 0.183( 0.1 and 0.175( 0.086, respectively. The
T2R2 CoMFA model was the best model with 9576_T2 and

Table 2. Statistical Data for QSAR Method with CoMFA and CoMSIA (Alignment 1)

CoMFA CoMSIA

model name:a T1R1 T2R1 T3R1 T1R1 T2R1 T3R1

fieldsb S, E E S, E S, E, A E, H A, D
q2 c 0.564 0.57 0.532 0.502 0.556 0.549
r2

CV
d 0.559 0.544 0.515 0.537 0.528 0.561

STEPe 0.445, 0.420, 0.411, 0.402 0.434, 0.400 0.449, 0.428, 0.424, 0.422 0.444, 0.419, 0.420, 0.412 0.454, 0.407 0.398, 0.395
ONCf 4 2 4 4 2 2
SEEg 0.215 0.31 0.213 0.259 0.313 0.332
r2 h 0.874 0.726 0.876 0.818 0.721 0.685
F i 76.457

(n1 ) 4, n2) 44)
60.838
(n1 ) 2, n2) 46)

77.728
(n1 ) 4, n2) 44)

49.358
(n1 ) 4, n2) 44)

59.454
(n1 ) 3, n2) 46)

49.989
(n1 ) 2, n2) 46)

prob. ofr2 ) 0 0 0 0 0 0 0
SEEboot 0.183( 0.1 0.271( 0.119 0.175( 0.086 0.224( 0.111 0.280( 0.130 0.314( 0.151
r2

boot
j 0.909( 0.26 0.774( 0.52 0.910( 0.026 0.855( 0.036 0.764( 0.059 0.714( 0.062

r2
pred

k 0.761 0.562 0.629 0.793 0.537 0.166
fraction
S 0.433 0.439 0.557
E 0.567 1 0.561 0.264 0.581
H 0.419
D 0.199D
A 0.179 0.801A

a Model name: T1R1) template T1 with alignment rule 1; T2R1) template T2 with alignment rule 1; T3R1) template T3 with alignment rule 1.
b Fields used: S) steric, E) electrostatic, H) hydrophobicity, A) hydrogen bond acceptor, D) hydrogen bond donor.c q2 ) cross-validated correlation
coefficient from LOO.d r2

CV ) cross-validated correlation coefficient.e STEP) standard error of prediction.f ONC optimal number of components.g SEE
) standard error of estimate.h F ) r2/(1 - r2). i SEEboot ) standard error of estimate from bootstrapping.j r2

boot ) correlation coefficient from bootstrapping.
k r2

pred ) correlation coefficient of the prediction of the test set.

Table 3. Statistical Data for QSAR Method with CoMFA and COMSIA (Alignment 2)

COMFA COMSIA

model name:a T1R2 T2R2 T3R2 T1R2 T2R2 T3R2

fieldb E E E E S, E H, A, D
q2 c 0.507 0.645 0.496 0.506 0.646 0.521
r2

CV
d 0.525 0.608 0.503 0.504 0.644 0.535

STEPe 0.446, 0.408 0.448, 0.382, 0.375 0.461, 0.423, 0.422 0.451, 0.417 0.458, 0.364, 0.357 0.439, 0.404
ONCf 2 3 3 2 3 2
SEEg 0.346 0.228 0.261 0.36 0.258 0.325
r2 0.659 0.855 0.81 0.631 0.814 0.7
F h 44.499

(n1 ) 2, n2) 46)
88.714
(n1 ) 3, n2) 45)

63.827
(n1 ) 3, n2) 45)

39.334
(n1 ) 2, n2) 45)

65.493
(n1 ) 3, n2) 45)

53.550
(n1 ) 2, n2) 46)

prob. ofr2 ) 0 0 0 0 0 0 0
SEEboot

i 0.303( 0.122 0.198( 0.097 0.219( 0.112 0.329( 0.154 0.230( 0.106 0.290( 0.127
r2

boot
j 0.725( 0.058 0.889( 0.031 0.860( 0.035 0.676( 0.061 0.848( 0.032 0.750( 0.048

r2
pred

k 0.352 0.036 0.277 0.429 0.091 0.326
fraction
S 0.184
E 1 1 1 1 0.816
H 0.469
D 0.179
A 0.352

a Model name: T1R2) template T1 with alignment rule 2; T2R2) template T2 with alignment rule 2; T3R2) template T3 with alignment rule 2.
b Fields used: S) steric, E) electrostatic, H) hydrophobicity, A) hydrogen bond acceptor, D) hydrogen bond donor.c q2 ) cross-validated correlation
coefficient from LOO.d r2

CV ) cross-validated correlation coefficient.e STEP) standard error of prediction.f ONC ) optimal number of components.
g SEE ) standard error of estimate.h F ) r2/(1 - r2). i SEEboot ) standard error of estimate from bootstrapping.j r2

boot ) correlation coefficient from
bootstrapping.k r2

pred ) correlation coefficient of the prediction of the test set.
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has anr2
boot of 0.889( 0.031 and a SEEboot of 0.198( 0.097.

Furthermore, the accumulation activity against AR 1.0 cells
overexpressing P-glycoprotein for the 13 compounds was
predicted from the corresponding external test set. Thirteen
compounds were used to validate our CoMFA model, represent-
ing 26% of the training set. The models using alignment rule 1
moderately predicted for efficacy of the external test set. These
results are not surprising and follow the statistics of every model.
In fact, the best prediction of the test set is with the 9576_T1,
followed by 9576_T3 and 9576_T2. They respectively have a
predictiver2 (r2

pred) of 0.761, 0.562, and 0.629. The external
test set was poorly to moderately predicted with the model using
conformations 9576_T1 and 9576_T3 and alignment rule 2. The
predictiver2 of the test set are 0.352 and 0.277, respectively.
With 9576_T2, the CoMFA model was not able to predict with
accuracy the external test set with anr2

pred of 0.036. Unexpect-
edly, the CoMFA model having the best ther2 (0.855) andq2

(0.645) was the least predictable. It is known that one could
have a very good internal prediction and a very poor external
prediction.57,58

Futhermore, each CoMFA model has one or two outliers
in the training set. In general, residual values greater than 2
times the standard error of the residuals generated in the
validation procedure are considered outliers.59 In the T1R1
CoMFA model, the outliers were compounds13 and 35. In
the T1R2 CoMFA model, the outliers were compounds29 and
35. In the T2R1 CoMFA model, the outlier was compound
42. In the T2R2 CoMFA model, the outliers were compounds
35 and 37. In the T3R1 CoMFA model, the outliers were
compounds29and35. In the T3R2 CoMFA model, the outliers
were compounds35 and 49. So compound35 seems to be a
major outlier for almost all models. The explanation for this
outlier is hard to define because this molecule has good
similarities compared to1. The only difference is the dimethoxy
groups on the anthranilic moiety are replaced by chlorine at
the 3 position of the anthranilic moiety. However, all of those
molecules can be outliers for each model with more than
95% confidence. The graphs of the actual pIC50 versus the
predicted pIC50 values for the training set and test set by the
conventional CoMFA with 9576_T1, 9576_T2, and 9576_T3

Table 4. CoMFA Actual and Predicted Activities for Training Set Molecules (Alignment 1)

T1R1 T2R1 T3R1

compd actual calcd residual calcd residual calcd residual

2 6.39 6.06 0.33 5.98 0.41 6.09 0.3
3 6.41 6.38 0.03 6.23 0.18 6.19 0.22
4 5.89 5.88 0.01 5.92 -0.04 5.96 -0.08
5 5.89 5.89 -0.0018 6.21 -0.33 5.79 0.1
6 6.1 6.23 -0.13 6.05 0.04 6.1 -0.01
7 6.22 6.3 -0.08 6.1 0.12 6.31 -0.09
8 5.92 5.89 0.03 6.18 -0.26 6.15 -0.23
9 5.75 5.94 -0.2 5.79 -0.04 5.91 -0.16

10 5.89 5.76 0.13 6.04 -0.15 5.94 -0.05
11 5.82 5.75 0.07 5.94 -0.11 5.87 -0.05
12 5.52 5.66 -0.14 5.95 -0.43 5.35 0.17
13 6.52 6.09 (outlier) 0.43 6.01 0.52 6.66 -0.13
14 6.16 6.15 0.01 6.15 0.01 6.01 0.15
15 6.28 6.55 -0.28 6.19 0.08 6.15 0.12
16 5.72 5.75 -0.03 5.96 -0.24 5.87 -0.15
17 6.19 6.27 -0.09 5.92 0.26 6.12 0.07
18 6 6.06 -0.06 5.86 0.14 5.98 0.02
19 5.89 6.06 -0.18 6.28 -0.4 6.02 -0.13
20 6.7 6.39 0.31 6.39 0.31 6.41 0.29
21 6 6.35 -0.35 6.35 -0.35 6 -0.0022
22 6 6.2 -0.2 6.01 -0.01 5.96 0.04
23 5.85 5.78 0.08 6.25 -0.39 6.04 -0.19
24 6.66 6.73 -0.07 6.55 0.11 6.48 0.18
25 6.66 6.4 0.26 6.48 0.18 6.73 -0.08
26 7.3 7.14 0.16 7.12 0.18 6.95 0.35
27 6.1 6.23 -0.14 5.59 0.51 6.3 -0.2
28 6.03 6.07 -0.04 6.17 -0.14 6.16 -0.13
29 7.66 7.55 0.11 7.25 0.41 7.13 (outlier) 0.53
30 7.19 7.38 -0.19 7.32 -0.13 7.18 0.01
31 7.4 7.54 -0.14 7.17 0.23 7.45 -0.05
32 7.03 6.84 0.19 7.08 -0.05 6.95 0.08
33 7.01 6.65 0.36 6.88 0.13 6.82 0.19
34 6.37 6.39 -0.02 6.73 -0.36 6.78 -0.41
35 7.85 7.15 (outlier) 0.7 7.27 0.58 7.32 (outlier) 0.53
36 7.06 6.93 0.13 6.57 0.49 7.19 -0.13
37 6.67 6.95 -0.28 7.15 (outlier) -0.48 6.93 -0.26
38 6.34 6.21 0.13 6.59 -0.24 6.25 0.09
39 6.97 6.96 0.01 6.85 0.12 7.27 -0.3
40 6.47 6.62 -0.15 6.87 -0.41 6.26 0.21
41 6.37 6.4 -0.03 6.92 -0.55 6.56 -0.19
42 7.48 7.22 0.26 6.81 (outlier) 0.67 7.39 0.09
43 7.42 7.63 -0.21 7.17 0.25 7.62 -0.2
44 6.73 6.76 -0.03 6.9 -0.17 6.78 -0.05
45 7.21 7.21 -0.00047 7.12 0.09 7.25 -0.04
46 7.15 7.26 -0.11 7.07 0.08 7 0.15
47 6.31 6.42 -0.11 6.42 -0.11 6.37 -0.06
48 6.76 6.78 -0.02 6.95 -0.19 6.87 -0.12
49 6.41 6.75 -0.34 6.82 -0.41 6.81 -0.4
50 7.12 7.25 -0.13 7.23 -0.11 7.13 -0.01
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models based on the MDR modulator inhibitory activity are
shown in Figure 3.

CoMSIA Analysis. Six CoMSIA models, one for each
conformation, were generated from the same training sets and
the same alignment rules used in CoMFA (alignments 1 and
2). The cross-validatedr2 (q2) values of the six models, which
result from the various CoMSIA options, are shown in the
Supporting Information. The statistical parameters associated
with all models are shown in Tables 2 and 3. Theq2 values
obtained from all CoMSIA models vary from 0.502 to 0.646.
By use of all fields from CoMSIA and the first alignment rules,
a moderately significant model was observed with aq2 of 0.479
for four components with 9576_T1, aq2 of 0.504 for two
components with 9576_T2, and aq2 of 0.52 for two components
with 9576_T3. Moderate to high significance models were
observed with the second alignment rule. In fact, aq2 of 0.482
for two components with 9576_T1, aq2 of 0.631 for four
components with 9576_T2, and aq2 of 0.51 for two components
with 9576_T3 were obtained. However, in each model, when
individual fields or combinations of the steric, electrostatic,

hydrophobic, hydrogen bond acceptor, and hydrogen bond donor
were taken into account, betterq2 values were obtained. Indeed,
the T1R1 CoMSIA model was the best model with 9576_T1
and used the electrostatic, steric, and hydrogen bond acceptor
fields. This model had aq2 value of 0.502 for four optimum
components, a conventionalr2 value of 0.818, and a SEE of
0.259. This yielded anF(4,44) value of 49.358. The T2R2
CoMSIA model was the best model with 9576_T2 and used
steric and electrostatic fields. This model had aq2 value of 0.646
with three optimum components, a conventionalr2 value of
0.814, and a SEE of 0.258. This yielded anF(3,45) value of
65.493. The T3R2 CoMSIA model was the best model with
9576_T3 and used hydrophobicity, hydrogen bond acceptor, and
hydrogen bond donor fields and alignment rule 2. This model
had a q2 value of 0.521 for two optimum components, a
conventionalr2 value of 0.7, and a SEE of 0.325. This yielded
an F(2,46) value of 53.550.

The predicted pIC50 values for each training set compounds
and the residual values are given in Tables 6 and 7. CoMFA
was used to validate our CoMSIA models. The T1R1 CoMSIA

Table 5. CoMFA Actual and Predicted Activities for the Training Set Molecules (Alignment 2)

T1R2 T2R2 T3R2

compd actual calcd residual calcd residual calcd residual

2 6.39 5.93 0.46 6.13 0.26 6.22 0.17
3 6.41 6.31 0.09 6.26 0.15 6.29 0.12
4 5.89 5.89 -0.0017 5.95 -0.06 6.02 -0.13
5 5.89 5.96 -0.08 6.08 -0.2 6.16 -0.27
6 6.1 6.22 -0.12 6.1 -0.0012 6.06 0.04
7 6.22 6.21 0.01 6.06 0.16 6.25 -0.03
8 5.92 5.84 0.08 6.07 -0.15 6.27 -0.35
9 5.75 6.15 -0.4 5.71 0.03 5.74 0.01

10 5.89 5.88 0.01 6.07 -0.18 5.92 -0.03
11 5.82 5.88 -0.06 5.91 -0.09 6.04 -0.22
12 5.52 5.92 -0.39 5.94 -0.42 5.27 0.25
13 6.52 6.17 0.35 6.07 0.45 6.36 0.17
14 6.16 5.74 0.42 6.13 0.03 6.12 0.04
15 6.28 6.18 0.1 6.19 0.09 6.06 0.22
16 5.72 5.86 -0.14 5.9 -0.18 5.87 -0.15
17 6.19 6.2 -0.02 6.1 0.09 6.13 0.06
18 6 6.23 -0.23 6.04 -0.04 6.06 -0.06
19 5.89 6.21 -0.32 6.11 -0.23 6.2 -0.31
20 6.7 6.25 0.45 6.26 0.44 6.25 0.44
21 6 6.23 -0.23 6.11 -0.11 6.19 -0.19
22 6 6.07 -0.07 5.76 0.24 6.11 -0.11
23 5.85 6.36 -0.51 6.06 -0.21 6.29 -0.44
24 6.66 6.39 0.27 6.49 0.16 6.5 0.16
25 6.66 6.27 0.38 6.45 0.21 6.63 0.03
26 7.3 6.84 0.46 7.18 0.12 7.04 0.26
27 6.1 6.28 -0.18 6.21 -0.11 6.11 -0.02
28 6.03 6.37 -0.34 6.23 -0.2 5.79 0.24
29 7.66 6.96 (outlier) 0.7 7.42 0.24 7.14 0.52
30 7.19 6.99 0.21 7.47 -0.27 7.42 -0.23
31 7.4 7.08 0.32 7.38 0.02 7.2 0.2
32 7.03 6.81 0.22 7.18 -0.15 7 0.03
33 7.01 6.63 0.38 6.88 0.13 6.85 0.16
34 6.37 6.52 -0.15 6.63 -0.26 6.78 -0.41
35 7.85 6.9 (outlier) 0.95 7.31 (outlier) 0.54 7.33 (outlier) 0.52
36 7.06 7.06 -0.0011 7.02 0.04 6.69 0.37
37 6.67 6.85 -0.18 7.23 (outlier) -0.56 7.12 -0.45
38 6.34 6.76 -0.41 6.33 0.01 6.3 0.04
39 6.97 7.12 -0.15 6.52 0.45 7.13 -0.17
40 6.47 7.09 -0.62 6.51 -0.05 6.34 0.12
41 6.37 7.05 -0.68 6.52 -0.14 6.61 -0.24
42 7.48 7.13 0.35 7.46 0.02 7.13 0.35
43 7.42 7.21 0.21 7.52 -0.1 7.22 0.2
44 6.73 7.11 -0.38 6.58 0.15 6.76 -0.03
45 7.21 7.19 0.02 7.2 0.01 7.27 -0.06
46 7.15 7.21 -0.06 7.16 -0.01 7.21 -0.06
47 6.31 6.3 0.01 6.31 0.0025 6.07 0.24
48 6.76 6.9 -0.14 6.68 0.08 6.95 -0.19
49 6.41 6.82 -0.41 6.66 -0.25 6.99 (outlier) -0.58
50 7.12 7.28 -0.16 7.25 -0.13 7.32 -0.2
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model was the best with 9576_T1 and has anr2
boot of 0.855(

0.036 and a SEEboot of 0.224( 0.111. The T2R2 and T3R2
CoMSIA models were the best with 9576_T2, and 9576_T3
was obtained with alignment rule 2 with anr2

boot of 0.848(
0.032 and 0.75( 0.048, respectively. They also have also a
SEEboot of 0.230 ( 0.0106 and 0.290( 0.127, respectively.
Furthermore, the same external test set was used to validate
the CoMSIA models. The external test set was predicted
poorly for efficacy using the alignment rule 1. These re-
sults are not surprising and follow the statistics of every model.
In fact, the best predictions of the test set are with 9576_T1,
followed by 9576_T2 and 9576_T3. They respectively have a
predictiver2 (r2

pred) of 0.793, 0.537, and 0.166. We are able to
predict poorly the external test set with the model using 9576_T1
and 9576_T3 and alignment rule 2. The predictiver2 of the
test set are respectively 0.429 and 0.326. With 9576_T2, the
CoMSIA models were not able to predict with accuracy the
external test set with anr2

pred of 0.091. Again, unexpectedly,
the CoMSIA model that had better statistical results (r2 of
0.814 and aq2 of 0.646) could not correctly predict the external
test set.

Futhermore, each CoMSIA model has two or three outliers
in the training set. In the T1R1 CoMSIA model, compounds
35and49were greater than 2 times the standard error and were
defined as outliers. In the T1R2 CoMSIA model, the outliers
were compounds29, 35, and41. In the T2R1 CoMSIA model,
the outliers were compounds35 and42. In the T2R2 CoMSIA
model, the outliers were compounds12, 35, and37. In the T3R1
CoMSIA model, the outliers were compounds29 and 35. In
the T3R2 CoMSIA model, the outliers were compounds35,
38, and41. Again, compound35 seems to be a major outlier
for almost all models. The graphs of the actual pIC50 versus
the predicted pIC50 values for the training set and test set by
the conventional CoMSIA with 9576_T1, 9576_T2, and 9576_T3
models based on the MDR modulator inhibitory activity are
shown in Figure 3.

CoMFA and CoMSIA Contours Maps. The q2 values in
the training sets associated with these CoMSIA models are
generally similar or superior to those of the CoMFA model.
However, in each case ther2 value are lower compared to

Table 6. CoMSIA Actual and Predicted Activities for the Training Set
Molecules (Alignment 1)

T1R1 T2R1 T3R1

compd actual calcd residual calcd residual calcd residual

2 6.39 5.96 0.42 6.08 0.31 6.08 0.31
3 6.41 6.44 -0.03 6 0.4 6.07 0.34
4 5.89 5.93 -0.04 6.08 -0.19 6.08 -0.19
5 5.89 5.78 0.11 6.22 -0.33 6.08 -0.19
6 6.1 6.22 -0.12 6.11 -0.01 6.09 0.01
7 6.22 6.26 -0.04 6.1 0.12 6.09 0.13
8 5.92 5.92 0.005 5.85 0.08 6.11 -0.19
9 5.75 5.95 -0.21 5.46 0.29 5.71 0.04

10 5.89 5.89 -0.01 6.11 -0.22 6.09 -0.2
11 5.82 5.92 -0.1 5.98 -0.16 6.07 -0.25
12 5.52 5.96 -0.44 5.95 -0.43 5.64 -0.12
13 6.52 6.15 0.38 6.12 0.4 6.21 0.31
14 6.16 5.94 0.22 6.07 0.09 6.06 0.1
15 6.28 6.32 -0.04 6.34 -0.06 6.35 -0.07
16 5.72 5.92 -0.2 6.03 -0.31 5.71 0.02
17 6.19 6.01 0.18 5.81 0.38 6.07 0.12
18 6 5.98 0.02 6.15 -0.15 6.09 -0.09
19 5.89 6.14 -0.26 6.23 -0.34 6.25 -0.36
20 6.7 6.35 0.35 6.29 0.41 6.78 -0.09
21 6 6.32 -0.32 6.15 -0.15 6.2 -0.2
22 6 6.07 -0.07 5.91 0.09 6.23 -0.23
23 5.85 5.84 0.02 6.14 -0.28 6.2 -0.34
24 6.66 6.65 0.01 6.62 0.04 6.24 0.42
25 6.66 6.3 0.36 6.46 0.2 6.23 0.43
26 7.3 7.11 0.19 7.05 0.25 6.99 0.31
27 6.1 6.35 -0.26 6.26 -0.17 5.85 0.24
28 6.03 6.08 -0.05 6.16 -0.13 6.15 -0.12
29 7.66 7.32 0.34 7.21 0.45 6.99 0.67
30 7.19 7.45 -0.25 7.29 -0.09 6.98 0.21
31 7.4 7.54 -0.14 7.51 -0.11 6.97 0.43
32 7.03 6.94 0.09 7.02 0.01 6.99 0.04
33 7.01 6.89 0.12 6.97 0.04 7 0.01
34 6.37 6.27 0.1 6.77 -0.4 6.95 -0.58
35 7.85 7.12 (outlier) 0.73 7.13 0.72 6.99 0.86
36 7.06 6.92 0.14 7.07 -0.01 6.46 0.6
37 6.67 6.99 -0.32 7.1 -0.43 6.98 -0.31
38 6.34 6.12 0.23 6.41 -0.07 6.92 -0.57
39 6.97 6.83 0.14 6.78 0.18 7.06 -0.09
40 6.47 6.68 -0.21 6.75 -0.28 6.68 -0.21
41 6.37 6.61 -0.24 6.87 -0.5 6.94 -0.57
42 7.48 7.06 0.42 6.84 0.64 7.13 0.35
43 7.42 7.49 -0.07 7.44 -0.02 7.46 -0.04
44 6.73 6.68 0.05 6.56 0.17 6.97 -0.24
45 7.21 7.27 -0.06 7.11 0.1 6.99 0.22
46 7.15 7.33 -0.18 7.14 0.01 7.06 0.09
47 6.31 6.51 -0.2 6.25 0.06 6.47 -0.16
48 6.76 7 -0.24 6.89 -0.14 7.07 -0.31
49 6.41 6.97 -0.56 6.73 -0.32 6.99 -0.58
50 7.12 7.06 0.06 7.27 -0.15 7.06 0.06

Table 7. CoMSIA Actual and Predicted Activities for the Training Set
Molecules (Alignment 2)

T1R2 T2R2 T3R2

compd actual calcd residual calcd residual calcd residual

2 6.39 5.94 0.45 6.05 0.34 6.11 0.28
3 6.41 6.21 0.19 6.16 0.25 6.17 0.24
4 5.89 5.93 -0.04 6.03 -0.14 6.04 -0.16
5 5.89 5.96 -0.07 6.11 -0.22 6.08 -0.19
6 6.1 6.24 -0.15 6.13 -0.03 6.16 -0.06
7 6.22 6.21 0.01 6.08 0.14 6.12 0.1
8 5.92 5.78 0.14 6.11 -0.19 6.4 -0.48
9 5.75 6.15 -0.4 5.62 0.13 5.87 -0.12

10 5.89 5.95 -0.06 6.07 -0.18 6.12 -0.24
11 5.82 5.92 -0.1 5.97 -0.15 5.99 -0.16
12 5.52 5.82 -0.3 6.05 -0.53 5.34 0.18
13 6.52 6.19 0.33 6.08 0.44 6.19 0.34
14 6.16 5.71 0.45 6.13 0.03 6.04 0.12
15 6.28 6.14 0.14 6.23 0.05 6.22 0.05
16 5.72 5.92 -0.2 5.99 -0.27 5.88 -0.16
17 6.19 6.16 0.03 6.02 0.16 5.99 0.19
18 6 6.08 -0.08 5.94 0.06 6.04 -0.04
19 5.89 6.36 -0.47 6.21 -0.32 6.1 -0.22
20 6.7 6.33 0.37 6.26 0.44 6.39 0.31
21 6 6.27 -0.27 6.21 -0.21 6.13 -0.13
22 6 6.21 -0.21 5.86 0.14 6.05 -0.05
23 5.85 6.47 -0.62 6.13 -0.27 6.19 -0.34
24 6.66 6.46 0.2 6.47 0.19 6.33 0.33
25 6.66 6.34 0.32 6.44 0.22 6.47 0.19
26 7.3 6.82 0.48 7.16 0.14 6.99 0.31
27 6.1 6.25 -0.15 6.1 -0.0004 6.09 0.0025
28 6.03 6.27 -0.24 6.28 -0.25 6.07 -0.04
29 7.66 6.91 0.75 7.34 0.32 7.07 0.59
30 7.19 6.97 0.23 7.43 -0.23 6.94 0.25
31 7.4 6.93 0.47 7.4 0.0033 7.1 0.3
32 7.03 6.8 0.23 7.14 -0.11 7.02 0.01
33 7.01 6.71 0.3 7.04 -0.03 6.91 0.1
34 6.37 6.63 -0.26 6.7 -0.33 6.75 -0.38
35 7.85 6.84 1.01 7.26 0.59 7.05 0.8
36 7.06 7.04 0.02 7.04 0.02 6.64 0.42
37 6.67 6.81 -0.14 7.2 -0.53 7.01 -0.34
38 6.34 6.71 -0.36 6.24 0.11 7.01 -0.66
39 6.97 7.14 -0.17 6.55 0.41 7.09 -0.12
40 6.47 7.11 -0.65 6.56 -0.1 6.83 -0.37
41 6.37 7.09 -0.72 6.52 -0.15 7.04 -0.67
42 7.48 7.09 0.39 7.22 0.26 7.11 0.37
43 7.42 7.29 0.13 7.62 -0.2 7.04 0.38
44 6.73 7.11 -0.38 6.56 0.17 7.07 -0.34
45 7.21 7.1 0.11 7.18 0.03 7.07 0.14
46 7.15 7.13 0.02 7.15 -0.002 7.02 0.13
47 6.31 6.34 -0.03 6.14 0.17 6.18 0.13
48 6.76 6.87 -0.11 6.68 0.07 7.16 -0.41
49 6.41 6.8 -0.39 6.79 -0.38 6.98 -0.57
50 7.12 7.28 -0.16 7.17 -0.05 7.14 -0.02
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CoMFA models except with alignment rule 1 and 9576_T2,
which was very similar. Thus, the CoMFA models have even
better internal predictive power than the CoMSIA model.
Furthermore, for the predictiver2 of the external set of every
model, CoMFA seems to have better or similar external
predictive power than the CoMSIA with alignment rule 1 and
to have lower external predictive power when using alignment
rule 2. After consideration of both the internal and external
predictive power of the models, the best CoMFA and CoMSIA
selected for every conformation to construct the stdev*coefficient
contour maps were T1R1, T2R1, and T3R1 for the CoMFA
and were T1R1, T2R1, and T3R2 for the COMSIA models.
For the CoMFA the steric field, the green (sterically favorable)
and yellow (sterically unfavorable) contours represent 80% and
20% level contributions. The red (negative charge favorable)
and blue (negative charge unfavorable) contours in the CoMFA
electrostatic field contours also represent 80% and 20% level
contributions (Figure 9), respectively. CoMSIA analyses were
also selected to construct contour maps (Figure 10). In the
CoMSIA electrostatic field, the red (negative charge favorable)

and blue (negative charge unfavorable) contours represent 80%
and 20% level contributions, respectively. In the steric field,
the green (sterically favorable) and yellow (sterically unfavor-
able) contours represent 80% and 20% level contributions,
respectively. In the hydrogen bond acceptor field, the magenta
(favorable) and orange (unfavorable) represent 80% and 20%
level contributions, respectively. In the hydrophobicity field,
the yellow (hydrophobic favorable) and green (hydrophobic
unfavorable) contours represent 80% and 20% level contribu-
tions, respectively.

The contours maps of the T1R1 CoMFA and T3R1 CoMFA
models were distributed in the entire molecule. In region A of
the molecules for both models, the presence of a heteroatom at
the 3 position (the amine on the isoquinoline) falls into a
negative favorable red region, suggesting that the negative
charge was important to the activity. This was confirmed with
almost all compounds in the training set. The blue positive
region at the ortho position of the amide in both models
indicated that a negative charge was not well abided. This was
confirmed in the moderate to weak potency of a few compounds

Figure 9. Contour map of steric and electrostatic fields (standard
deviation× coefficient) generated with the CoMFA model based on
accumulation of daunorubicin on MDR cell. Color coding is as follows.
Blue indicates that a positive charge favors high affinity, whereas red
indicates that a positive charge does not favor high affinity. Yellow
indicates regions where bulky groups decrease activity, whereas green
indicates regions where bulky groups increase activity.

Figure 10. Contour maps generated with the CoMSIA model based
on accumulation of daunorubicine in the MDR cell: (A) T1R1 CoMSIA
model; (B) T2R1 CoMSIA model; (C) T3R2 CoMSIA model. Color
coding is as follows. Blue indicates that a positive charge favors high
affinity, whereas red indicates that a positive charge does not favor
high affinity. Yellow indicates regions where hydrophobic groups
increase the activity, whereas green indicates regions where hydrophobic
groups decrease the activity. Magenta indicates that a hydrogen bond
acceptor favors high affinity, whereas orange indicates unfavorable
contributions of the hydrogen bond acceptor. Cyan indicates that a
hydrogen bond donor favors high affinity, whereas purple indicates
unfavorable contributions of the hydrogen bond donor. Important
note: In the part A, the yellow indicates regions where bulky groups
decrease activity, whereas green indicates regions where bulky groups
increase activity.
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in the training set with an amine heteroatom at that position.
For example, compound9, 27, and47 bear an amine group at
that position, while compound34 has a chlorine atom at that
position. Other blue regions, for both models, near the second
aromatic ring of the isoquinoline were favorable to a positive
charge. In that case, this positive charge could reflect the
hydrophobicity of the ring that is necessary to the potency. The
negatively charged and favorable red region on top of the second
aromatic ring of the isoquinoline, in both models, suggests that
negative charge was important to the activity. The same
conclusion was also shown with the T1R1 CoMFA model in
the A region. Furthermore, in both models, the green region at
the top of the isoquinolinyl group indicates that a bulky group
may be necessary to increase the potency. However, the yellow
contour at the bottom of the isoquinoline in both models suggests
that bulky groups are not well accepted. The big favorable
electrostatic blue region in both models close to the amide
reveals that a positive charge will increase the antagonistic
activity. In fact, in the electrostatic region, the influence of the
hydrogen bond acceptor carbonyl amide as part of this field
could be considered. So the carbonyl amide could be part of
the electrostatic fields and help the activity.

In region B of1, the small blue positive region in the T1R1
CoMFA model at position 5 of the amide and the big region in
the T3R1 CoMFA model indicate that a negative charge was
not permitted. This was confirmed to decrease the potency of a
few compounds such as 9401 that bear the chlorine atom. Also,
this large blue region of the T3R1 CoMFA model indicates the
positive influence of the aromatic ring to the activity. The small
red region near the dimethoxyl group on the anthranilic moiety
in both models indicates that a negative charge is favorable for
high affinity to P-gp. This is in concordance with potent
molecules such as1, 35, and50 in the training set, molecules
that are negatively charged with the methoxyl group, chlorine
atom, and fluorine atom at this position, respectively.

In region C, the green region in the T1R1 CoMFA model
near the aromatic ring indicates that bulky groups are well
abided to increase the potency. This was confirmed with
compounds43 and 45. In the T2R1 CoMFA model, the red
contours suggest that negative charge could be potentially
increase the affinity of P-gp for the benzene ring.

In region D, the presence of the amine on the tetrahydroiso-
quinolinyl moiety falls into a positive favorable blue region in
both models, suggesting that a positive charge was allowed to
increase the accessibility of the compounds to the P-glycoprotein
pocket. In addition, the amine could be necessary to form a
hydrogen bond or it could be protonated to bind to P-gp. These
two large blue regions near the dimethoxyl group in both models
indicate that a positive charge or a hydrogen bond acceptor was
required for potency. In both models, a red region near the
dimethoxyl group indicates that a negative charge was allowed
to increase the potency. In the T1R1 CoMFA model, the green
region near the dimethoxyl moiety reveals that a bulky group
at position 3 or 4 on the benzene ring of the tetrahydroiso-
quinoline group is well tolerated. This was confirmed with
compounds39 and40. The green region (sterically favorable)
and yellow (sterically unfavorable) contours around the tet-
rahydroisoquinolinyl moiety indicate that bulky groups could
be present to increase the activity and that bulky groups will
decrease the activity. This probably means that the binding site
was sterically restricted. In the T3R1 CoMFA model, the green
region near the dimethoxyl group reveals that the bulky group
at position 4 on the benzene ring of the tetrahydroisoquinoline
is well tolerated. However, at position 3, a less bulky group

could help to increase the activity. This was confirmed with
compound40. The yellow (sterically unfavorable) contours
around the tetrahydroisoquinoline indicate that the bulky group
could decrease the activity.

The contours maps of CoMSIA models also indicate features
in regions A-D of 1. In region A, the T1R1 CoMSIA model
showing a green favorable region near the second aromatic ring
of the isoquinoline indicates that bulky groups could be added
to increase the antagonistic potency. This was confirmed with
the remarkable difference of the activity between the presence
of a single benzene ring compared to the naphthalenyl-like group
or a benzenecyclohexyl group in almost all compounds in the
training set. At the same place, in both T2R1 and T3R2 CoMSIA
models, the favorable hydrophobic yellow contours on the
isoquinoline group indicate the importance of the hydrophobic
group such as aromatic ring or alkyl group. In the T1R1
CoMSIA models, the blue favorable positive electrostatic
indicates that a positive charge increases the potency. The same
conclusion using the T1R1 CoMFA model was drawn about
the importance of the amine group at the 3 position on the
isoquinoline to the activity. In fact, the magenta color shows
this position and represents a favorable hydrogen bond acceptor
region in the T1R1 and T3R2 CoMSIA models, and a small
red negative region shows this position in the T2R1 CoMSIA
model. In the T2R1 and T3R2 CoMSIA models, the green
unfavorable region near position 3 on the isoquinoline suggests
that a hydrophobic group or carbon atom was decreasing the
activity of the molecules. In the T1R1 and T3R2 CoMSIA
models orange unfavorable hydrogen bond acceptor regions at
position 4, 5, or 6 of the isoquinoline group suggest that an
acceptor group like amine or oxygen was not well accepted. In
fact, compounds15 and 28 bearing a carbonyl group and
compounds such as14, 17, and18substituted by an ether group
exhibit moderate anti-P-gp activities. Also, in the T1R1 and
T3R2 CoMSIA models, an orange unfavorable hydrogen bond
acceptor region at position 8 of the isoquinoline suggests that
an acceptor group like an aromatic amine group influenced
negatively the pharmacological activity, as depicted already by
the T1R1 CoMFA model. Furthermore, in the T3R2 CoMSIA
model the amide bond near region A of the template falls into
an orange unfavorable hydrogen bond acceptor region and a
cyan favorable hydrogen bond donor region. Thus, donor groups
like carbonyl and acceptor groups like the amine were of
penultimate importance for the activity. In the T1R1 CoMSIA
model, the small orange region reveals that the hydrogen bond
acceptor at position 2 such as amine (e.g., compound9) of the
isoquinoline decreases the potency of anthralinamides.

In region B of the template in the T3R2 CoMSIA model, the
small favorable hydrophobic yellow contours suggest the
importance of a hydrophobic group on the acceptor group at
position 4 of the anthranilic moiety. Also at the same position
and same model, the purple unfavorable hydrogen bond donor
region indicates that donor groups decrease the activity. In the
T1R1 CoMSIA model, the blue favorable positive electrostatic
indicates that a positive charge increases the potency. This
probably showed again the importance of a positively charged
aromatic group. The amide bond near region B of the template,
in the T3R2 CoMSIA model, falls into the favorable hydrogen
bond donor area (cyan) and a purple unfavorable hydrogen bond
donor region. Thus, acceptor groups like carbonyl and amine
were important for the activity.

In region C, T2R1 and T3R2 CoMSIA models show favorable
hydrophobic yellow contours, suggesting that the aromatic linker
arm was important for the activity. The small unfavorable
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hydrogen bond donor purple region between the regions B and
C in T3R2 CoMSIA model indicates that a donor group was
not tolerated at this place when the group in region D was with
a more flexible group.

In region D, the T1R1 CoMFA model conclusion of the
region can also be applied. In fact, the presence of the amine
on the tetrahydroisoquinoline moiety falls into a positive
favorable blue region and orange unfavorable hydrogen bond
acceptor regions, suggesting that positive charge was allowed
to increase binding to P-glycoprotein and the amine should be
protonated to form a hydrogen bond to P-gp. The two blue
regions near the dimethoxy group in both models suggest that
a positive charge or hydrogen bond acceptor was required for
the potency. In the T1R1 CoMSIA model, a red region on the
dimethoxy group indicates that negative charge was tolerated
to increase the potency. The green region near the dimethoxy
reveals that a bulky group at the 3 or 4 position on the benzene
ring of the tetrahydroisoquinoline is well tolerated. The sterically
favorable green region and yellow sterically unfavorable
contours around the tetrahydroisoquinoline indicate that a bulker
group in this direction is favored but is not favored in the other.

Few commonalities and differences between the CoMFA and
CoMSIA models have been observed after the contour map
analysis and can be summarized by the two best models T1R1
CoMFA and CoMSIA. In region A, both CoMFA and CoMSIA
show a few commonalities: (1) there is a positive influence on
the activity of a heteroatom acceptor group like amine at the 3
position of the isoquinoline; (2) a negative charge at the ortho
position of the amide was not well abided; (3) an aromatic bulky
group may be necessary to increase the potency. They also have
a few differences between both methods. The extra information
from the CoMFA model suggests that a bulky group at the end
of the isoquinoline is not well accepted. Also, the CoMFA model
reveals the importance of the hydrogen bond acceptor carbonyl
amide. The CoMSIA model adds more specific information and
reveals that an acceptor group like amine or oxygen at position
4, 5, or 6 of the isoquinoline group and an acceptor group at
position 8 of the isoquinoline, an aromatic amine group, were
not well accepted. In region B, both CoMFA and CoMSIA have
no commonalities. They have, however, a few differences
between both models. The extra information from the CoMFA
model suggests that the negative charge at position 5 of the
amide was not well permitted. The CoMSIA model suggests
that an aromatic group positively charged is important for the
potency. In region C, both CoMFA and CoMSIA have no
commonalities. The T1R1 CoMSIA model does not have any
contour maps in that region. The T1R1 CoMFA model indicates
that bulky groups are well abided to increase the potency. In
region D, both CoMFA and CoMSIA share the same common
themes: (1) the amine on the tetrahydroisoquinolinyl is
important to the activity and could form a hydrogen bond or it
could be protonated to bind to P-gp; (2) a positive charge or a
hydrogen bond acceptor was required for the potency near the
dimethoxyl group; (3) near the dimethoxyl group a negative
charge was allowed to increase the potency; (4) a bulky group
at position 3 or 4 on the benzene ring of the tetrahydroiso-
quinoline group is well tolerated; (5) the binding site was
probably sterically restricted because of the sterically favorable
region and the sterically unfavorable contours around the
tetrahydroisoquinolinyl moiety.

After the analysis of these models, we established the
functional groups or atoms important to the potency and the
binding of 1. In region A, proton-acceptor groups such as an
amine at position 3 in a bulky bis aromatic system were the

most important feature for the activity. This observation was
also made by Pajeva and Wiese.48 In addition, the negative
charge from an amine or an oxygen atom at position 6 or 7 on
the isoquinoline probably increases the potency of1. In region
B, the presence of a hydrogen bond acceptor group such as a
methoxy group or an atom negatively charged like fluorine or
chlorine was the favored feature for the activity. Also, the
aromatic group could be an important feature if the total
electrostatic charge of that group is positive. In region C, the
hydrophobic group such as the benzene ring was important to
the activity. A similar finding was also suggested by Pajeva
and Wiese.51 In addition, a bulky group near the phenyl ring
will probably increase the potency of1. In region D, the
presence of the acceptor group like the basic amine of the
tetrahydroisoquinoline, the presence of the acceptor groups like
the oxygen atom of the dimethoxy, and the presence of bulky
aromatic groups like the tetrahydroquinoline seem to be the most
important features of that region. Specific bulky or less bulky
groups at position 3 or 4 on the tetrahydroquinoline will
probably help to increase the activity. Also, a negative charge
on the aromatic ring of the tetrahydroquinoline will probably
increase the activity. Finally, the hydrogen bond acceptor and
donor groups of both amides were important for increasing the
potency.

Conclusion

In this study, we investigated 3D-QSAR models of anthra-
nilamide MDR modulators. Predictive CoMFA and CoMSIA
models were developed for the modulation of P-glycoprotein
against cells that overexpress P-glycoprotein using 49 anthra-
nilamide derivatives in the training set taken from a data set of
178 compounds. Three different conformations were used to
see the effect of the conformation in the model. On the basis of
these three conformations, moderate to good internal predictive
3D-QSAR models were derived. Each model was validated
using an external test set of 13 compounds not included in the
training set and showed poor to good predictiver2, between
0.036 and 0.793. Models with the bestq2 did not give good
external prediction. T1R1 CoMFA and CoMSIA models were
the best models developed so far. T1R1 CoMFA has anr2

cv of
0.559, and T1R1 CoMSIA has anr2

cv of 0.537. The steric,
electrostatic, and hydrogen bond acceptor fields were shown to
be the most important properties. These fields identified the
functional group and atoms possibly related to the bonding and
the inhibition of P-gp. We established that an acceptor group
such as an amine in position 3 in a bulky bis aromatic system
in region A, a hydrogen acceptor group like a methoxyl group
or an atom negatively charged like fluorine or chlorine in region
B, the aromatic group charged positively in region B, the
hydrophobic group like the benzene ring in region C, the
acceptor group like the basic amine of the tetrahydroisoquino-
line, the acceptor group like the oxygen atom of the dimethoxy,
and the bulky aromatic group like the tetrahydroquinoline in
region D, and both amide bonds were the most important to be
modified to improve the pharmacological activity of anthranil-
amides as P-glycoprotein antagonists. Furthermore, a few
compounds in the test set are the exception. In fact, compound
t_9543 is quite potent (70 nM) and does not have an acceptor
hydrogen group like a methoxyl group in region B, but the
molecule has a methyl group at the 3 position of the anthranilic
moiety. Also, test set compounds t_9297, t_9380, and t_9442
did not correspond to all the trends derived from those models.
They do not have an aromatic group in region C, and compound
t_9297 is more potent (400 nM) than the other two compounds.
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It seems that an aliphatic group like a propyl group was better
for the potency compared to a biphenyl or bromine.

The conclusion of the Wiese and Pajeva studies with the
Free-Wilson analysis and CoMSIA model outlined the presence
of a tetrahydroquinoline substructure bonded to the anthranil-
amide moiety through a phenyl moiety and of a heteroatom in
position 3 in a bulky aromatic ring system in A region of1 to
have the most significant impact on anti-MDR activity. The
anthranilamide moiety provides hydrogen bond interactions with
the protein for inhibition activity. In our studies, we found
basically the same idea, but instead of a heteroatom at position
3, we found an acceptor group such as an amine in position 3
in a bulky bis aromatic system in region A. Also, we found
that an electroattractor group or acceptor group is necessary for
the anthranilamide moiety in region B and the acceptor groups
in region D are very important for the activity. A few of these
results in this paper are common to other P-gp inhibitors like
an aromatic ring system, a basic tertiary nitrogen positioned at
a fixed distance from the aromatic system, and an amide
carbonyl group that acts as an acceptor and a donor group.
However, P-gp inhibitors can bind to different binding sites.
So each site will have its own SAR with some common themes.

The derived models in this study explain the observed
variance in the activity of anthranilamides. They can help to
understand the mechanism of P-gp activity, and they can also
provide important insights into structural variations that may
lead to the design of new modulators of P-glycoprotein
exhibiting high and selective activity.
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